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Impressive changeover of reaction course in ring expansion of
styrylbenzocyclobutenol under alkoxide-forming conditions
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Abstract—Impressive changeover of the reaction course was observed in the rearrangement of styrylbenzocyclobutenol derivative 1.
While the thermal reaction gave naphthalene 2, the base-promoted reaction gave the isomeric product 3 in high yield.
� 2006 Elsevier Ltd. All rights reserved.
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In relevance to the synthesis of polycyclic aromatic
natural products, we have described in the preceding
letter an approach for constructing phenylnaphthalene
structures via the ring enlargement of styrylbenzocyclo-
butenols under thermal conditions (Scheme 1).1 Two
isomeric starting materials A and B, differing in the con-
nectivity of the styryl unit (a or b) and the benzocyclo-
butene unit, could be converted to closely related
structures C and C 0, which share the same skeleton,
but with complementary protection pattern.

In contrast to the convergency of this process, described
herein is its divergency, which was unexpectedly found in
continuing studies (Scheme 2; 1!3). Thus, simple heat-
ing of benzocyclobutenol 1 in refluxing toluene gave the
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expected phenylnaphthalene 2.2 The same reaction was
attempted under the base-promoted conditions, hoping
to gain rate acceleration effect, if any. Indeed, upon con-
version of 1 to the corresponding lithium alkoxide
(LDA, THF, �78 �C), the starting material 1 was
smoothly consumed during the warmup to 0 �C in 2 h.
Unexpectedly, however, the product isolated in quanti-
tative yield was isomer 3, after careful quenching with
2 M aqueous hydrochloric acid. The structure of 3 was
assigned by extensive NOE study (Fig. 1).3 Note the dif-
ference in the locations of the aryl groups in 2 and 3.
Herein, we feature the origin of this unexpected result,
involving an intriguing skeletal rearrangement.

For gaining insight into the reaction mechanism, label-
ing experiments were carried out. Upon subjection of
the 13C-labeled substrate 1* to the reaction conditions
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Figure 1. NOE study of compound 3.

Figure 2. ORTEP drawing of the X-ray structure of 5.4
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as stated above, the final location of the labeled carbon
in 3* was as shown in Scheme 3, clearly indicating that
the fission of the C(1)–C(a) bond was involved.2

TLC-Monitoring suggested the presence of an interme-
diate in this puzzling reaction. Upon careful quenching
with water, the unstable intermediate was identified
as cyclopropanol 4 (Scheme 4). Since 4 was unstable
toward chromatographic purification (SiO2), we
attempted to trap it as a stable derivative. After some
experimentation, quenching of the reaction with
Me3SiCl, rather than aqueous HCl, enabled us to obtain
silyl ether 5, which gave nice single crystals for X-ray
analysis (Fig. 2).4 Thus, the intermediate was proven
to be tricyclic compound 4, in which the 2,6-dimethoxy-
phenyl group is disposed to the exo direction.

Based on these data, a possible mechanism could be
drawn (Scheme 5). Assuming an ionic mechanism, the
first step would be the alkoxide-induced 1,2-shift of the
acetal carbon, that is C(2), to generate transient benzyl
anion II, which counterattacks the carbonyl group to
give cyclopropanolate III.5
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Subsequent fate of tricyclic intermediate III depends on
the method of quenching (Scheme 6). In the case of the
acid quenching, phenol 3 was the product, which could
be explained by the acid activation of the dimethyl ace-
tal to induce the cleavage of cyclopropanol as in IV. By
contrast, quenching with water gave acid-sensitive cyclo-
propanol 4, which manifests another key aspect in the
present skeletal rearrangement to 3. Furthermore, it is
interesting to note that quenching with MeOH (0 �C)
gave indanone 6 in quantitative yield. Use of MeOD fur-
nished deuterated 6 as indicated. The diverse modes of
the cyclopropane cleavage are related to the well-known
tautomeric behavior of cyclopropanols under basic con-
ditions.6 Conversion of 4 was also promoted by treat-
ment with Et3N in D2O, giving indanone 6 deuterated
at the benzylic position.

Finally, we examined the generality of this reaction. Ta-
ble 1 shows the comparison of the reactions under ther-
mal/basic conditions for the related substrates 1b–d with
different aromatic moieties (Ar). We found the thermal
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Table 1.
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method A
  toluene, 110 ˚C

method B
 LDA, THF;
 then 2 M HCl aq

1b–d

2b–d 3b–d

Run Ar Method Yield (%) 2:3

1

Me

MeO

A 96 2b only
B 90 2:98

2

MeO OMe

MeO

Aa 88 2c only
B 46 7:93

3

Me

Me

Me A 79 2d only
B 79 38:63

a See Ref. 7.
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reactions (method A) invariably afforded the expected
products 2b–d, while the base-promoted conditions led
to mixtures of products 3b–d accompanied by variable
amounts of ‘thermal products’ 2b–d.

In conclusion, we have described an impressive change-
over of reaction course in the rearrangement of styryl-
benzocyclobutenol derivative 1, which is not only
interesting from mechanistic standpoints, but also have
implication related to the synthesis of polyaromatic nat-
ural products.
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